exterior$26903$ - definizione. Che cos'è exterior$26903$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è exterior$26903$ - definizione

IN DIFFERENTIAL GEOMETRY, A DIFFERENTIAL OPERATION DEFINED IN DIFFERENTIAL FORMS THAT INCREASES THE FORM DEGREE BY 1
Exterior differentiation; Invariant formula for exterior derivative

Exterior derivative         
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899.
Exterior space         
User:Jmgarcal/Exterior spaces; Wikipedia talk:Articles for creation/Exterior spaces; Exterior spaces
In mathematics, the notion of externology in a topological space X generalizes the basic properties of the family
Radiodifusión Argentina al Exterior         
INTERNATIONAL SERVICE OF THE ARGENTINE PUBLIC RADIO-TELEVISION
Radiodifusion Argentina al Exterior; RAE Argentina al Mundo
RAE Argentina al Mundo (), previously known as Radiodifusión Argentina al Exterior or RAE, is Argentina's state-owned international broadcaster, which uses shortwave, satellite and the Internet.

Wikipedia

Exterior derivative

On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus.

If a differential k-form is thought of as measuring the flux through an infinitesimal k-parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a (k + 1)-parallelotope at each point.